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1 Introduction

OR Primer is a collection of resources to teach fundamentals of computational optimization
regarding Linear Programming and Mixed Integer (Linear) Programming.

This collection targets those who want to get a jumpstart without any technical and theoretical
details, except the absolutely required fundamental terms. Therefore, there will be lots of
examples.

Primary focus of OR Primer is to give the reader the ability to discern if a “business” prob-
lem can be converted to an OR (LP or MILP) problem. In essence “yes” or “no” depends
on the answers of the following questions: “Is there a decision to be made? (i.e. Decision
Variables)”, “Are there limitations and requirements? (i.e. Constraints)”, “What is the ul-
timate aim? (i.e. Objective Function)” and “Can we describe the problem in linear terms?
(i.e. Linearity)”.

At the second stage, we will focus on transferring the “business” problem from verbal to
mathematical form. Reader is expected to get a sense of how to write a mathematical model
in a standard way.

Finally, we will learn how to describe the model in code. We will learn about Algebraic
Modelling Languages (AML) and solvers. Our focus will be on scripting languages such as R,
Python and Julia.

Optionally, we will discuss theory. Topics such as simplex, duality, interior points etc. will be
briefly explained but it is up to the reader to really dive in the theory or if she is just happy
with the coding.

There will be lots of external resources. Feel free to add them on Discussions.
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Part I

Linear Programming

5



Linear programming (LP) is the fundamental modeling method of Operations Research. But
briefly an LP should adhere to the following rules.

• Neither constraints nor the objective function may contain non-linear terms.
• Decision variables are all continuous. They may not be binary or integer.
• Decision variables can be either non-negative (𝑥 ≥ 0) or unrestricted (urs).

Mathematical Model

A mathematical representation of LP model is provided below.

min 𝑐T𝑥 (1.1)
𝐴𝑥 = 𝑏 (1.2)
𝑥 ≥ 0 (1.3)

(1.4)

Parts of the Model

An LP model requires the following object types to be complete.

• Decision Variables (DV): Decision variables are the objects which the algorithm
(i.e. solver) decides its value. A combination of a decision variable value set is a so-
lution. In LP it is not possible to define a DV in non-linear (e.g., 𝑥2) terms or in
interaction with other DVs (e.g., 𝑥𝑦). In the model, elements of 𝑥 are decision variables.
𝑥 is an 𝑛-sized vector.

• Coefficients and constants: It is possible to add pre-defined constants as coefficients
to decision variables or by themselves. In the model, elements of 𝐴, 𝑏 and 𝑐 are constants
and coefficients. 𝐴 is an 𝑚 x 𝑛 matrix, 𝑏 is an 𝑚-sized vector and 𝑐 is an 𝑛-sized vector.

• Constraints: Constraints are the rules which the decision variable values should satisfy
in order to be a valid (i.e. feasible) solution. In the model, 𝐴𝑥 = 𝑏 system of equations
and non-negativity terms (𝑥 ≥ 0) are the constraints.

• Objective Function: Objective function defines the direction (either minimization or
maximization) and the evaluation formula of the solution quality. In the model, the term
min 𝑐T𝑥 is the objective function and the solver will try to minimize 𝑐T𝑥.
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Indices

There are also indices which we will use to define elements in decision variables, coefficients,
constants and constraints. For instance 𝑥𝑖 is the 𝑖 th element of the decision variable vector
and 𝐴𝑖,𝑗 is the (i,j)th element of the coefficient matrix. Let’s rewrite the model.

min
𝑛

∑
𝑗=1

𝑐𝑗𝑥𝑗 (1)

𝑛
∑
𝑗=1

𝐴𝑖,𝑗𝑥𝑗 = 𝑏𝑖 ∀𝑖∈1..𝑚 (2)

𝑥𝑗 ≥ 0 ∀𝑗∈1..𝑛 (3)
(1.5)

These parts may also be multi-dimensional. For instance 𝑥𝑖,𝑗,𝑘,𝑡 is possible.
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2 Giapetto Example

Giapetto is the introductory example of Linear Programming. This example is directly taken
from Winston’s Operations Research (4th Edition).

2.1 Problem Description

“Giapetto’s Woodcarving, Inc., manufactures two types of wooden toys: soldiers and
trains.

A soldier sells for $27 and uses $10 worth of raw materials. Each soldier that is manufactured
increases Giapetto’s variable labor and overhead costs by $14. A train sells for $21 and uses
$9 worth of raw materials. Each train built increases Giapetto’s variable labor and overhead
costs by $10.

The manufacture of wooden soldiers and trains requires two types of skilled labor: carpentry
and finishing. A soldier requires 2 hours of finishing labor and 1 hour of carpentry labor.
A train requires 1 hour of finishing labor and 1 hour of carpentry labor.

Each week, Giapetto can acquire all of the needed raw material, but he is only allotted 100
finishing hours and 80 carpentry hours. There is an unlimited demand for trains. However,
at most, 40 soldiers are sold each week.

Giapetto wants to maximize his weekly profit (Revenues - Costs). Formulate a mathemat-
ical model for Giapetto’s situation that can be used to maximize Giapetto’s weekly profit.”

Let’s convert problem statement into a number of model building steps in the next section.

2.2 Model Building Steps

1. Let’s calculate the net profit of a soldier and a train, respectively. Sale price of a soldier
is $27, raw material cost is $10 and labor/overhead costs are $14. So producing a
soldier toy yields $3 of net profit. With the same process a train’s net profit is $2.

2. Our aim is to maximize our total net profit. Let’s denote 𝑥1 as the number of soldiers
produced and 𝑥2 as the number of trains produced. Values 𝑥1 and 𝑥2 will be determined
by the solver. Therefore they are decision variables.
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3. So, our total net profit can be defined as 𝑧 = 3𝑥1 + 2𝑥2. This is also our objective
function.

4. For finishing tasks, a soldier requires 2 hours and a train requires 1 hour of labor.
Finishing labor capacity is 100 hours. So, its mathematical expression is 2𝑥1 +𝑥2 ≤ 100.

5. For carpentry tasks, a soldier requires 1 hour and a train requires 1 hour of labor.
Carpentry labor capacity is 80 hours. So, its mathematical expression is 𝑥1 + 𝑥2 ≤ 80.

6. Demand for soldiers is limited with 40. So, its mathematical expression is 𝑥1 ≤ 40.

7. Also, it is not possible to sell negative amounts of soldiers or toys (no returns). Therefore
both 𝑥1 and 𝑥2 should be greater than zero (non-negativity constraints).

Let’s gather all the steps in a single model in the next section.

2.3 Mathematical Model

2.3.1 Decision Variables

• 𝑥1: Number of soldiers to be manufactured.

• 𝑥2: Number of trains to be manufactured.

2.3.2 Model

max 𝑧 = 3𝑥1 + 2𝑥2 (2.1)
𝑠.𝑡.

2𝑥1 + 𝑥2 ≤ 100 (2.2)
𝑥1 + 𝑥2 ≤ 80 (2.3)

𝑥1 ≤ 40 (2.4)
𝑥1, 𝑥2 ≥ 0 (2.5)

(2.6)
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2.3.3 Constraints

• (6.1) is the objective function to maximize total profits. Each soldier yields $3 profit and
each train $2.

• (2.2) is the finishing task capacity constraint. Each soldier requires 2 hours of labor and
each train requires 1 hour. Total capacity for finishing task is 100 hours.

• (2.3) is the carpentry task capacity constraint. Each soldier requires 1 hour of labor
and each train requires 1 hour. Total capacity for finishing task is 80 hours.

• (2.4) is the maximum demand constraint for soldiers. Maximum available demand for
soldiers is 40.

• (4.3) Non-negativity constraint. It is not possible to sell negative amount of each toys
(i.e. no backorders, no returns etc. in this case).
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3 Markowitz Portfolio Example

Harry Markowitz, one of the pioneers of computational finance and founder of Modern Portfolio
Theory, introduced his financial portfolio model in 1952. He defines portfolio items (e.g. stocks)
with their risk (usually standard deviation or variance of returns) and reward (mean return).
(Trivia: Markowitz is a Nobel Laureate in Economics, 1990)

3.1 Problem Description

There are multiple versions of this problem, but we will model a simple one. Suppose there
is an array of investment items with different risk and reward values. We would like form a
portfolio to minimize the total risk, given a desired return level. Naturally, risk should be
higher with the return.

3.2 Model Building Steps

1. Define the decision variable 𝑥𝑖 as the fraction of our portfolio assigned to investment
item (i.e. stock) 𝑖.

2. Define risk parameter as 𝜎𝑖 and reward parameter as 𝜇𝑖 for item 𝑖.
3. Define desired return level parameter as 𝑞.

4. Add constraint of the total portolio should add up to 1.

5. Add constraint of minimum return requirement from the portfolio.

6. Add objective function of minimum risk to the portfolio.

3.3 Mathematical Model

3.3.1 Decision Variables

• 𝑥𝑖: Fraction of the budget allocated to investment item 𝑖.
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3.3.2 Parameters

• 𝜎𝑗: Risk parameter of item 𝑖.
• 𝜇𝑖: Reward (return) parameter of item 𝑖.
• 𝑞: Required minimum reward level from the portfolioe.

3.3.3 Model

min 𝑧 = ∑
𝑖

𝜎𝑖𝑥𝑖 (3.1)

𝑠.𝑡.
∑

𝑖
𝜇𝑖𝑥𝑖 ≥ 𝑞 (3.2)

∑
𝑖

𝑥𝑖 = 1 (3.3)

𝑥𝑖 ≥ 0, ∀𝑖 (3.4)
(3.5)

3.3.4 Constraints

• (6.1) is the objective function to minimize total spending.
• (3.2) is the minimum reward requirement constraint.
• (3.3) is the constraint to make sure that sum of all portfolio fractions is 1.
• (4.3) Non-negativity constraint. It is not possible to sell negative amount of each toys

(i.e. no backorders, no returns etc. in this case).
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4 Diet Example

Diet problem (or Stigler Diet) actually predates Linear Programming. It was coined by George
Stigler in 1939. (Trivia: Stigler is a 1982 Economics Nobel Laureate)

4.1 Problem Description

Problem statement is as follows.

“For a moderately active man weighing 154 pounds, how much of each of 77 foods should be
eaten on a daily basis so that the man’s intake of nine nutrients will be at least equal to the
recommended dietary allowances (RDAs) suggested by the National Research Council in 1943,
with the cost of the diet being minimal?”

Stigler identifies 9 nutrients (calories, protein, calcium, iron etc.) and their recommended
intakes. Also there is a list of nutrients with their nutritional data per dollar. Full data is
given in the following (link).

Stigler wants the minimal cost menu which will satisfy nutritional requirements.

4.2 Model Building Steps

1. Define the decision variable 𝑥𝑖 as the budget in dollars assigned to food 𝑖.
2. Define nutritional requirement parameter as 𝑏𝑗 for the nutrient 𝑗.

3. Define 𝑎𝑖,𝑗 as the nutritional level from food 𝑖 of nutrient 𝑗.

4. Define objective function as them minimization of total cost.

5. Define constraints to satisfy nutritional demand by the food items.
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4.3 Mathematical Model

4.3.1 Decision Variables

• 𝑥𝑖: Total budget allocated to food item 𝑖.

4.3.2 Parameters

• 𝑏𝑗: Nutritional requirement level of nutrient 𝑗.
• 𝑎𝑖,𝑗: Nutritional content of food item 𝑖 for nutrient 𝑗.

4.3.3 Model

min 𝑧 = ∑
𝑖

𝑥𝑖 (4.1)

𝑠.𝑡.
∑

𝑖
𝑎𝑖,𝑗𝑥𝑖 ≥ 𝑏𝑗, ∀𝑗 (4.2)

𝑥𝑖 ≥ 0, ∀𝑖 (4.3)
(4.4)

4.3.4 Constraints

• (6.1) is the objective function to minimize total spending.
• (4.2) is the set of constraints to satisfy all nutritional requirements.
• (4.3) Non-negativity constraint. It is not possible to sell negative amount of each toys

(i.e. no backorders, no returns etc. in this case).
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Part II

Mixed Integer (Linear) Programming
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Mixed Integer (Linear) Programming (MIP/MILP) is a type of linear programming which also
includes integers as decision variables. So rules are changed slightly.

• Neither constraints nor the objective function may contain non-linear terms.
• Not all decision variables are necessarily continuous. They may be binary or integer.
• Decision variables can be either non-negative (𝑥 ≥ 0) or unrestricted (urs).

There are more restrictive versions as well such as Integer Programming (IP) which rules out
continuous variables or even Binary Programming (BP) which every decision variable is either
1 or 0.

Mathematical Model

Mathematical representation of MIP/MILP model is almost the same as LP with the exception
of the inclusion of integer (and binary) decision variable types.

min 𝑐T𝑥 (4.5)
𝐴𝑥 + 𝐵𝑦 + 𝐶𝑤 = 𝑏 (4.6)

𝑥 ≥ 0 (4.7)
𝑦 ∈ {0, 1, ...} (4.8)
𝑤 ∈ {0, 1} (4.9)

(4.10)

Here in our case 𝑦 represents the set of integer decision variables and 𝑤 represents binary
decision variables. Even though binary decision variables are a subset of integer variables, due
to their wide usage it is more convenient to make such a distinction.
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5 Knapsack Example

Knapsack problem is one of the fundamental problems of MILP. Knapsack is a representation
of a capacity that should be filled with discrete items with various weights and value. The
trick is to find the “optimal” set of items to add to knapsack in order to get the maximum
value while adhering to capacity constraint.

An entertaining example would be you are given a cart at a shopping mall and you are allowed
to fill it for free. Would you fill it with cereal boxes or chocolate?

A more “real life” example which we experience almost all the time would be packing for the
airport which you are constrained with the size of your luggage and total weight of the luggage
and its contents.

In practice logistics companies deal with this problem every day in order to fill their trucks
with packages of various sizes and weights.

5.1 Problem Description

Suppose there is a “space” (e.g. a knapsack) with a single dimensional capacity of 𝑊 . Also we
have a set of items with value and weight properties. We would like to determine which items
to include in the knapsack to get the total maximum value from the items in the knapsack.

5.2 Model Building Steps

1. Define the decision variables (𝑥𝑖) as whether item 𝑖 is in the knapsack or not. These
decision variables are defined as binary.

2. Define value (𝑣𝑖) and weight (𝑤𝑖) parameters for each item 𝑖.
3. Define a capacity parameter (𝑊 ) for the knapsack.

4. Define capacity constraint as the total weight of items should not exceed capacity pa-
rameter.

5. Define objective function as the maximization of total value of items included in the
knapsack.

17



5.3 Mathematical Model

5.3.1 Decision Variables

• 𝑥𝑖: Whether item 𝑖 is included in the knapsack or not (binary variable).

5.3.2 Parameters

• 𝑊 : Capacity of the knapsack.

• 𝑣𝑖: Value of item 𝑖.

• 𝑤𝑖: Weight of item 𝑖.

5.3.3 Model

max 𝑧 = ∑
𝑖

𝑣𝑖𝑥𝑖 (5.1)

𝑠.𝑡.
∑

𝑖
𝑤𝑖𝑥𝑖 ≤ 𝑊 (5.2)

𝑥𝑖 ∈ {0, 1} (5.3)
(5.4)

5.3.4 Constraints

• (6.1) is the objective function to maximize total value for items included in the knapsack.
• (5.2) is the capacity constraint of the knapsack. Each item 𝑖 has a weight parameter 𝑤𝑖

so items included in the knapsack should not weigh more than 𝑊 .
• (6.8) Binary constraint for decision variables.
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6 Traveling Salesman Example

Traveling Salesman (Salesperson) Problem (TSP) is one of the most popular problems in
combinatorial optimization. Briefly, suppose you need to visit N cities in a road trip. You will
leave home, visit each city once and come back to your home. What is the shortest route?

TSP is an NP-complete problem making it exponentially hard as the problem size increases.
There is a trove of literature around TSP and relevant problems such as Vehicle Routing
Problem (VRP). Special algorithms and software are designed to solve TSP in addition to
solvers. Arguably the most popular solver is Concorde.

6.1 Problem Description

Suppose there are N cities from 1..N. A traveling salesperson starts at city 1, visits each city
once and returns “home” (city 1). You are given the (driving) distance between each city. You
are expected to find the shortest route possible.

For instance, for a 5 city problem 1-3-2-5-4-1 is a valid route.

6.2 Model Building Steps

1. Define index of cities as 𝑖 with 𝑁 cities.

2. Define decision variables 𝑥𝑖,𝑗 as a binary variable which represents whether city 𝑗 is
visited after city 𝑖. Both 𝑖 and 𝑗 are part of set of cities.

3. Define (symmetric) distance between each city as 𝑑𝑖,𝑗.

4. Define the objective function as the minimization of total distance traveled.

5. You cannot visit the same city after itself (𝑖 ≠ 𝑗).

6. Add constraints to eliminate subroutes. Each city should be in the source and destination
once.
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6.3 Mathematical Model

6.3.1 Decision Variables

• 𝑥𝑖,𝑗: Whether the salesperson used the route from city 𝑖 to 𝑗 (binary variable).
• 𝑢𝑖: Subtour elimination variable. It represents the order of the city in the route. (𝑖 ∈

2..𝑁)

6.3.2 Parameters

• 𝑑𝑖,𝑗: Distance from city 𝑖 to 𝑗 (binary variable).

6.3.3 Model

max 𝑧 = ∑
𝑖

∑
𝑗

𝑑𝑖,𝑗𝑥𝑖,𝑗 (6.1)

𝑠.𝑡.
𝑥𝑗,𝑗 = 0, ∀𝑖 (6.2)

∑
𝑖

𝑥𝑖,𝑗 = 1, ∀𝑗 (6.3)

∑
𝑗

𝑥𝑖,𝑗 = 1, ∀𝑖 (6.4)

𝑢𝑖 − 𝑢𝑗 + (𝑁 − 1)𝑥𝑖,𝑗 ≤ 𝑁 − 2, 2 ≤ 𝑖 ≠ 𝑗 ≤ 𝑁 (6.5)
1 ≤ 𝑢𝑖, 2 ≤ 𝑖 ≤ 𝑁 (6.6)

𝑢𝑖 ≤ 𝑁 − 1, 2 ≤ 𝑖 ≤ 𝑁 (6.7)
𝑥𝑖,𝑗 ∈ {0, 1} (6.8)

𝑢𝑖 ∈ 𝑍 (6.9)
(6.10)

6.3.4 Constraints

• (6.1) is the objective function to maximize total value for items included in the knapsack.
• (6.2) is the constraint to prevent visiting the same city.
• Constraints (6.3) and (6.4) ensure each city is used once as a source (“from”) and once

as a destination (“to”).
• Constraints (6.5), (6.6) and (6.7) ensure we get a full tour as a feasible solution. Since

this is an introductory document we will not go into detail but you can read the reference.
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• (6.8) Binary constraint for decision variables.
• (6.9) Integer constraint for decision variables.
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